Generalized Fractional Statistics
نویسندگان
چکیده
We link, by means of a semiclassical approach, the fractional statistics of particles obeying the Haldane exclusion principle to the Tsallis statistics and derive a generalized quantum entropy and its associated statistics. PACS number(s): 05.20.-y, 05.30.-d, 05.40.+j, 05.60.+w The generalized non-extensive statistics and the fractional exclusion statistics have excited great interest because of the deep insights on the classical and quantum behavior of many di erent physical systems and because of the wide range of their applications. The notion of generalized entropy, based on multifractal concepts, has been introduced by Tsallis [1],
منابع مشابه
On certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملSystem of fuzzy fractional differential equations in generalized metric space
In this paper, we study the existence of integral solutions of fuzzy fractional differential systems with nonlocal conditions under Caputo generalized Hukuhara derivatives. These models are considered in the framework of completegeneralized metric spaces in the sense of Perov. The novel feature of our approach is the combination of the convergentmatrix technique with Schauder fixed point princi...
متن کاملCascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملFUZZY FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN PARTIALLY ORDERED METRIC SPACES
In this paper, we consider fuzzy fractional partial differential equations under Caputo generalized Hukuhara differentiability. Some new results on the existence and uniqueness of two types of fuzzy solutions are studied via weakly contractive mapping in the partially ordered metric space. Some application examples are presented to illustrate our main results.
متن کاملGeneralized Lagrange theorem and thermodynamics of a multispecies quasiparticle gas with mutual fractional exclusion statistics
We discuss the relationship between the classical Lagrange theorem in mathematics and the quantum statistical mechanics and thermodynamics of an ideal gas of multispecies quasiparticles with mutual fractional exclusion statistics. First, we show that the thermodynamic potential and the density of the system are analytically expressed in terms of the language of generalized cluster expansions, w...
متن کامل